首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   0篇
  国内免费   1篇
系统科学   1篇
理论与方法论   1篇
现状及发展   42篇
研究方法   6篇
综合类   38篇
自然研究   5篇
  2018年   2篇
  2016年   3篇
  2012年   2篇
  2011年   6篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   8篇
  2004年   4篇
  2002年   1篇
  2001年   6篇
  2000年   2篇
  1999年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   7篇
  1974年   2篇
  1972年   8篇
  1971年   4篇
  1970年   3篇
  1966年   1篇
  1964年   1篇
  1962年   1篇
  1961年   2篇
  1959年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
71.
Transmission ratio distortion in the mouse is caused by several t-complex distorters (Tcds) acting in trans on the t-complex responder (Tcr). Tcds additively affect the flagellar movement of all spermatozoa derived from t/+ males; sperm carrying Tcr are rescued, resulting in an advantage for t sperm in fertilization. Here we show that Tagap1, a GTPase-activating protein, can act as a distorter. Tagap1 maps to the Tcd1 interval and has four t loci, which encode altered proteins including a C-terminally truncated form. Overexpression of wild-type Tagap1 in sperm cells phenocopied Tcd function, whereas a loss-of-function Tagap1 allele reduced the transmission rate of the t6 haplotype. The combined data strongly suggest that the t loci of Tagap1 produce Tcd1a. Our results unravel the molecular nature of a Tcd and demonstrate the importance of small G proteins in transmission ratio distortion in the mouse.  相似文献   
72.
Mutations involving gains of glycosylation have been considered rare, and the pathogenic role of the new carbohydrate chains has never been formally established. We identified three children with mendelian susceptibility to mycobacterial disease who were homozygous with respect to a missense mutation in IFNGR2 creating a new N-glycosylation site in the IFNgammaR2 chain. The resulting additional carbohydrate moiety was both necessary and sufficient to abolish the cellular response to IFNgamma. We then searched the Human Gene Mutation Database for potential gain-of-N-glycosylation missense mutations; of 10,047 mutations in 577 genes encoding proteins trafficked through the secretory pathway, we identified 142 candidate mutations ( approximately 1.4%) in 77 genes ( approximately 13.3%). Six mutant proteins bore new N-linked carbohydrate moieties. Thus, an unexpectedly high proportion of mutations that cause human genetic disease might lead to the creation of new N-glycosylation sites. Their pathogenic effects may be a direct consequence of the addition of N-linked carbohydrate.  相似文献   
73.
Loh AN  Bauer JE  Druffel ER 《Nature》2004,430(7002):877-881
Seawater dissolved organic matter (DOM) is the largest reservoir of exchangeable organic carbon in the ocean, comparable in quantity to atmospheric carbon dioxide. The composition, turnover times and fate of all but a few planktonic constituents of this material are, however, largely unknown. Models of ocean carbon cycling are thus limited by the need for information on temporal scales of carbon storage in DOM subcomponents, produced via the 'biological pump', relative to their recycling by bacteria. Here we show that carbohydrate- and protein-like substances in the open Atlantic and Pacific oceans, though often significantly aged, comprise younger fractions of the DOM, whereas dissolved lipophilic material exhibits up to approximately 90 per cent fossil character. In contrast to the millennial mean ages of DOM observed throughout the water column, weighted mean turnover times of DOM in the surface ocean are only decadal in magnitude. An observed size-age continuum further demonstrates that small dissolved molecules are the most highly aged forms of organic matter, cycling much more slowly than larger, younger dissolved and particulate precursors, and directly links oceanic organic matter age and size with reactivity.  相似文献   
74.
Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2   总被引:15,自引:0,他引:15  
Wu L  Bauer CS  Zhen XG  Xie C  Yang J 《Nature》2002,419(6910):947-952
Voltage-gated calcium channels (VGCCs) conduct calcium into cells after membrane depolarization and are vital for diverse biological events. They are regulated by various signalling pathways, which has profound functional consequences. The activity of VGCCs decreases with time in whole-cell and inside-out patch-clamp recordings. This rundown reflects persistent intrinsic modulation of VGCCs in intact cells. Although several mechanisms have been reported to contribute to rundown of L-type channels, the mechanism of rundown of other types of VGCC is poorly understood. Here we show that phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), an essential regulator of ion channels and transporters, is crucial for maintaining the activity of P/Q- and N-type channels. Activation of membrane receptors that stimulate hydrolysis of PtdIns(4,5)P2 causes channel inhibition in oocytes and neurons. PtdIns(4,5)P2 also inhibits P/Q-type channels by altering the voltage dependence of channel activation and making the channels more difficult to open. This inhibition is alleviated by phosphorylation by protein kinase A. The dual actions of PtdIns(4,5)P2 and the crosstalk between PtdIns(4,5)P2 and protein kinase A set up a dynamic mechanism through which the activity of VGCCs can be finely tuned by various neurotransmitters, hormones and trophic factors.  相似文献   
75.
76.
Beebe DJ  Moore JS  Bauer JM  Yu Q  Liu RH  Devadoss C  Jo BH 《Nature》2000,404(6778):588-590
Hydrogels have been developed to respond to a wide variety of stimuli, but their use in macroscopic systems has been hindered by slow response times (diffusion being the rate-limiting factor governing the swelling process). However, there are many natural examples of chemically driven actuation that rely on short diffusion paths to produce a rapid response. It is therefore expected that scaling down hydrogel objects to the micrometre scale should greatly improve response times. At these scales, stimuli-responsive hydrogels could enhance the capabilities of microfluidic systems by allowing self-regulated flow control. Here we report the fabrication of active hydrogel components inside microchannels via direct photopatterning of a liquid phase. Our approach greatly simplifies system construction and assembly as the functional components are fabricated in situ, and the stimuli-responsive hydrogel components perform both sensing and actuation functions. We demonstrate significantly improved response times (less than 10 seconds) in hydrogel valves capable of autonomous control of local flow.  相似文献   
77.
该文介绍了一种全新的在线滴定技术连续流动滴定,它通过一个由电子开关控制的与时间变化相连的三口双通螺旋管阀来控制和测定任何时间下(包括滴定终点时)样品与滴定剂的体积比,来代替传统滴定方法必须测定平衡点时滴定剂体积,实现了真正的在线滴定。通过优化系统设置的参数及仪器的部件,对实际样品进行分析,结果显示相对标准偏差低于1%,和传统技术相比无明显差异。仪器可以根据实验需要配置不同的检测系统,如:电位计、电导计及光度计等。同时,本仪器与自动滴定仪相比,消耗的样品和滴定剂是自动滴定仪的十分之一,滴定过程全自动、易于操作,分析速度更快,价格更低,易于广泛使用。  相似文献   
78.
Carnivorous pitcher plants capture insect prey to acquire essential nutrients while growing on extremely poor soils. A few individual species have evolved mutualistic relationships with small mammals that visit the traps to harvest nectar, and in return leave faecal droppings in the pitchers. Here we report that a diverse guild of nectar-harvesting vertebrates visits pitchers of two common lowland Nepenthes species without providing any obvious benefit for the plants. Over four consecutive field seasons, we observed four species of sunbirds and one species of tree shrew drinking nectar from pitcher plants. Foraging activity was highest in the morning and late afternoon. Van Hasselt’s, Brown-throated and olive-backed sunbirds were regular and highly abundant pitcher visitors in two different field sites. A crimson sunbird and a lesser tree shrew were each observed harvesting nectar on one occasion. The vertebrates harvested nectar from the pitcher rim (peristome) of N. rafflesiana and from the underside of the pitcher lid of N. gracilis. A comparison of the nectar production of these and three further sympatric species revealed exceptionally high quantities of nectar for N. rafflesiana. Other factors such as plant and pitcher abundance and the habitat preferences of the observed vertebrates are likely to also play a role in their choice to visit particular species. This is the first account of a case of obvious nectar robbing from Nepenthes pitchers by a guild of species that are too large to serve as prey, while the pitcher size and shape prevent faecal droppings from reaching the pitcher’s inside. This interaction provides an example of a possible starting point for the evolution of the elaborate mutualistic relationships observed in some species. Follow-up adaptations of pitcher shape could enable the plants to catch the droppings of their visitors and turn an exploitative relationship into a mutualism.  相似文献   
79.
Bauer A  Westkämper F  Grimme S  Bach T 《Nature》2005,436(7054):1139-1140
Photoinduced electron transfer is an essential step in the conversion of solar energy into chemical energy in photosystems I and II (ref. 1), and is also frequently used by chemists to build complex molecules from simple precursors. During this process, light absorption generates molecules in excited electronic states that are susceptible to accepting or donating electrons. But although the excited states are straightforward to generate, their short lifetimes makes it challenging to control electron transfer and subsequent product formation-particularly if enantiopure products are desired. Control strategies developed so far use hydrogen bonding, to embed photochemical substrates in chiral environments and to render photochemical reactions enantioselective through the use of rigid chiral complexing agents. To go beyond such stoichiometric chiral information transmission, catalytic turnover is required. Here we present a catalytic photoinduced electron transfer reaction that proceeds with considerable turnover and high enantioselectivity. By using an electron accepting chiral organocatalyst that enforces a chiral environment on the substrate through hydrogen bonding, we obtain the product in significant enantiomeric excess (up to 70%) and in yields reaching 64%. This performance suggests that photochemical routes to chiral compounds may find use in general asymmetric synthesis.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号